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Summary
Background Acute ischaemic stroke (AIS) is a highly heterogeneous disorder and warrants further investigation to
stratify patients with different outcomes and treatment responses. Using a large-scale stroke registry cohort, we
applied data-driven approach to identify novel phenotypes based on multiple biomarkers.

Methods In a nationwide, prospective, 201-hospital registry study taking place in China between August 01, 2015
and March 31, 2018, the patients with AIS who were over 18 years of age and admitted to the hospital within 7 days
from symptom onset were included. 92 biomarkers were included in the analysis. In the derivation cohort
(n=9539), an unsupervised Gaussian mixture model was applied to categorize patients into distinct phenotypes. A
classifier was developed using the most important biomarkers and was applied to categorize patients into their corre-
sponding phenotypes in an validation cohort (n=2496). The differences in biological features, clinical outcomes, and
treatment response were compared across the phenotypes.

Findings We identified four phenotypes with distinct characteristics in 9288 patients with non-cardioembolic
ischaemic stroke. Phenotype 1 was associated with abnormal glucose and lipid metabolism. Phenotype 2 was charac-
terized by inflammation and abnormal renal function. Phenotype 3 had the least laboratory abnormalities and small
infarct lesions. Phenotype 4 was characterized by disturbance in homocysteine metabolism. Findings were repli-
cated in the validation cohort. In comparison with phenotype 3, the risk of stroke recurrence (adjusted hazard ratio
[aHR] 2.02, 95% confidence intervals [CI] 1.04-3.94), and mortality (aHR 18.14, 95%CI 6.62-49.71) at 3-month post-
stroke were highest in phenotype 2, followed by phenotype 4 and phenotype 1, after adjustment for age, gender,
smoking, drinking, history of stroke, hypertension, diabetes mellitus, dyslipidemia, and coronary heart disease. The
Monte Carlo simulation showed that the patients with phenotype 2 could benefit from high-intensity statin therapy.

Interpretation A data-driven approach could aid in the identification of patients at a higher risk of adverse clinical
outcomes following non-cardioembolic ischaemic stroke. These phenotypes, based on different pathophysiology,
can suggest individualized treatment plans.
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Research in context

Evidence before this study

Acute ischaemic stroke (AIS) is a highly heterogeneous
disorder with high risk of stroke recurrence, disability,
and mortality. We searched PubMed using the terms
(“ischaemic stroke” or “cerebrovascular disease”), (“bio-
marker” or “molecular” or “phenotype” or “subtype” or
“subgroup”), and (“machine learning” or “artificial intelli-
gence” “data-driven” or “clustering” or “non-supervised”
or “classify”) for articles published up to May 1, 2022
and found no study of clustering analysis based on bio-
markers in patients with ischaemic stroke. Although sev-
eral studies have confirmed the associations of
biomarkers with pathogenesis and prognosis in patients
with ischaemic stroke, most of them just focused on a
single biomarker and neglected the interaction effects
of multiple biomarkers. Therefore, it’s necessary to iden-
tify novel phenotypes of AIS using unsupervised cluster-
ing analysis and further investigate their relationships
with treatment responses and clinical outcomes.

Added value of this study

To the best of our knowledge, this is the first to identify
four phenotypes with specific characteristics using 92
biomarkers from a large-scale, multi-centre cohort of
patients with AIS. We adopted the Gaussian mixture
model and light gradient boosted machine (LightGBM)
model to identify the novel phenotypes. We described
that the biological features, clinical outcomes, and treat-
ment response varied across phenotypes. We found
that phenotype 2, which was characterized by inflam-
mation and abnormal renal function, had the highest
risk of stroke recurrence, disability, and mortality, and
was associated with a good response to the high-inten-
sity statin therapy. Besides, we revealed that phenotype
1(abnormal glucose and lipid metabolism) and pheno-
type 4(disturbance in homocysteine metabolism) were
also associated with adverse clinical outcomes.

Implications of all the available evidence

This study provides evidence of biological heterogene-
ity for AIS, that may help gain a deeper insight into the
potential pathogenesis in ischaemic stroke. In addition,
we provide a new risk stratification approach for sup-
porting clinical decision making.
Introduction
Acute ischaemic stroke (AIS) is a highly heterogeneous
disorder that is associated with considerably high mor-
bidity, disability, and mortality.1,2 Antiplatelet and lipid-
lowering drugs are recommended for the prevention of
non-cardioembolic ischaemic stroke.3 Despite strict
adherence to current guideline recommendations for
the prevention of stroke recurrence, some patients have
been observed still to be at a high risk of recurrent
stroke.4,5 This suggests a need for a reassessment of the
presumptions regarding the pathophysiology of ischae-
mic stroke and potential therapeutic targets. Besides,
the traditional stroke subtypes based on the Trial of Org
10 172 in Acute Stroke Treatment (TOAST) and Causa-
tive Classification of Stroke (CCS) criteria need a com-
prehensive and systematic evaluation of intracranial or
extracranial arteries, as well as cardiac examination,
which makes it difficult to intervene early in patients
with AIS.6,7 Therefore, stratification of the heterogene-
ity among patients based on the ensemble of multiple
biomarkers can enhance the understanding of acute
ischaemic stroke and enable more personalized treat-
ment planning.

Many recent works have shown that rather than rely-
ing on expert clinicians’ knowledge, data-driven
approaches like unsupervised machine learning, can be
used to discover novel phenotypes of patients in various
diseases including diabetes,8 sepsis,9 dilated cardiomy-
opathy,10 pulmonary arterial hypertension,11 and heart
failure,12 that may help in understanding mechanisms
of diseases and treatment effects. Therefore, with the
availability of a large amount of biomarker data, a com-
prehensive, data-driven assessment of the heterogeneity
using machine learning methods may provide new
opportunities to understand AIS, which previously has
not been done.

This study aims to develop and evaluate novel pheno-
types of acute non-cardioembolic ischaemic stroke
based on 92 biomarkers using a large-scale multi-centre
dataset. Through a machine learning-based unsuper-
vised clustering approach, we aim to identify different
phenotypes of patients that share similar pathophysio-
logical characteristics, treatment responses and clinical
outcomes.
Methods

Study design and population
This study retrospectively analysed the data from the
Third China National Stroke Registry (CNSR-III), which
is a nationwide, multi-centre, prospective, observational
registry study of 15,166 patients with AIS or transient
ischaemic attack (TIA) enrolled at 201 hospitals in
China between August 01, 2015 and March 31, 2018.
The patients participating in the CNSR-III study
were over 18 years of age and were admitted to the
hospital within 7 days of AIS or TIA onset. Further
details about the CNSR-III study design and method-
ology have been described elsewhere.13 This study
was approved by the Institutional Review Boards
(IRB) of Beijing Tiantan Hospital. Written informed
consent was obtained from all included patients or
their representatives. The data were reported in
adherence to the Strengthening the Reporting of
www.thelancet.com Vol 53 Month , 2022
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reporting guidelines.

From the CNSR-III dataset, patients with acute non-
cardiac ischaemic stroke were included in this analysis.
To reduce the heterogeneity of populations, patients
who experienced TIA or a stroke of other determined
etiology (OE) were excluded from the analysis. As we
did not collect the cardiac-specific biomarkers such as
cardiac troponin-T (cTnT), cardiac troponin-I (cTnI) and
B-type natriuretic peptide (BNP), we excluded the
patients diagnosed with cardioembolic stroke in the
analysis. Also, the patients who presented with cancer
or infection within 2 weeks before stroke onset were
excluded. The baseline characteristics between the
included and excluded patients are presented in Supple-
mentary Table 1. A temporal split was applied to the
included patients to divide them into the derivation
cohort (»75% data, admitted before August 2017) and
the validation cohort (»25% data, admitted after August
2017) (Figure 1).

Clinical information about the patients was col-
lected through in-person interviews by trained
research coordinators. Stroke severity was assessed
within 24 hours of hospital admission using the
National Institutes of Health Stroke Scale (NIHSS)
score. Stroke etiology was classified into 5 major
categories: large artery atherosclerosis (LAA), cardi-
oembolism (CE), small-vessel occlusion (SVO), stroke
Figure 1. Study flow chart. A. Patient selection. B. Feature selection.
Abbreviations: CNSR-III, Third China National Stroke Registry; TIA

National Institutes of Health Stroke Scale; BMI, body mass index; SB
symptomatic intracranial atherosclerotic stenosis; sECAS, symptom
A1c; TML, trimethyllysine; LightGBM, light gradient boosted machine
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of other determined etiology (OE) and stroke of
undetermined cause (UE), according to the TOAST
and CCS criteria.6,7
Blood biomarker
The blood samples were collected on the day of the
hospital enrollment. All the specimens were stored at
-80°C until the testing was performed. The measure-
ment of blood biomarkers was performed at the central
laboratory at Tiantan Hospital, Beijing, China by labo-
ratory staff who were blinded to the patients’ character-
istics and clinical outcomes. A total of 83 blood
biomarkers involved in this study, including blood con-
stituents (n=14), coagulation function (n=6), liver func-
tion (n=13), renal function (n=5), inflammation (n=12),
electrolyte (n=5), lipid metabolism (n=15), homocyste-
ine metabolism (n=4), glucose metabolism (n=2), and
gut microbial metabolites (n=7).
Imaging data
Brain magnetic resonance imaging (MRI) and vascular
assessment for intracranial arteries and extracranial
arteries were collected from 13,012 patients in the Digi-
tal Imaging and Communications in Medicine
(DICOM) format for the extraction of neuroimaging fea-
tures. The patients were assessed for the presence of
symptomatic intracranial atherosclerotic stenosis
, transient ischaemic attack; AIS, acute ischaemic stroke; NIHSS,
P, systolic blood pressure; DBP, diastolic blood pressure; sICAS,
atic extracranial atherosclerotic stenosis; HbA1c, Hemoglobin
.
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(sICAS) and extracranial atherosclerotic stenosis
(sECAS). sICAS and sECAS were defined as severe
(50%-99%) stenosis or occlusion of clinically relevant
intracranial and extracranial arteries, respectively.
sICAS judgement was based on the Warfarin-Aspirin
Symptomatic Intracranial Disease (WASID) criteria.14

The North American Symptomatic Carotid Endarterec-
tomy Trial (NASCET) criteria was adopted to adjust the
assessment of sECAS.15,16 The brain tissue damage
caused by the acute ischaemic stroke, measured as the
volume of the ischaemic lesions, was calculated from
the diffusion-weighted image (DWI) and apparent diffu-
sion coefficient (ADC) scans using a deep learning seg-
mentation model.17
Clinical outcomes
Recurrent stroke at 3-, 6-, and 12-months post-stroke
were the primary clinical outcomes of this study. The
onset of a composite vascular event (stroke, myocardial
infarction, or vascular death), all-cause mortality at 3-, 6-,
and 12-months post-stroke, and poor functional outcome
(defined as modified Rankin Scale [mRS] score of 3-6) at
3-months post-stroke were the secondary clinical out-
comes. Patients were followed up via in-person interview
at 3 months, and via telephonic interview at 6 and 12
months by trained interviewers based on a standardized
interview protocol to collect the clinical outcomes.13 For
patients who were enrolled in this study, 141 patients
were lost to follow-up, of which 97 individuals were in
the derivation cohort and 44 individuals were in the vali-
dation cohort.
Data pre-processing
All the included patients in the study were assessed for
the presence of clinical features. In this study, we tried
to use features that were objective and can be automati-
cally extracted. A total of 92 biomarkers were included
in the analysis (Supplementary Table 2). In the deriva-
tion cohort, we excluded 251 patients without multiple
biomarkers. The features which were missing in more
than 35% of the patients were excluded from the cluster-
ing analysis (Figure 1). The missing value of the features
were shown in Supplementary Figure 2. Then, the
missing values were imputed with the mode of the data
for categorical features and with the median of the data
for numerical features. The patients were divided into
six subgroups according to their age (≤60, 61-70 and
>70) and gender (male and female), and the missing
values were imputed based on the mode and the median
of the respective subgroup.

To focus only on the clinically important features
and remove irrelevant features from the analysis, a fea-
ture selection was performed using the light gradient
boosted machine (LightGBM), a gradient boosting deci-
sion tree (GBDT) algorithm.18 Using the data from the
derivation cohort, the features were ranked according to
their importance in the prediction of stroke recurrence,
and the 30 most important features were selected for
further clustering analysis (Figure 2A). SHapley Addi-
tive exPlanations (SHAP) values were calculated for
these 30 features (Figure 2B-C). The selected features
were standard normalized to zero mean and unit stan-
dard deviation. Supplementary Figure 3 shows a heat-
map representing the correlation between 30
biomarkers.
Unsupervised clustering analysis
To identify phenotypes of patients with similar clinical
characteristics, an unsupervised clustering analysis on
the data from the derivation cohort was performed. To
extract more generalizable and robust phenotypes, an
unsupervised Gaussian mixture model (GMM) cluster-
ing method was used. GMM is a probabilistic model
that uses a soft clustering approach to group patients
into discrete phenotypes, and it assumes that all data
samples X are generated by a mixture of K multivariate
Gaussian distributions. Here, each phenotype is mod-
eled as a gaussian multivariate mixture with a mean
and covariance that describes the shape of each pheno-
type.19 In our analysis, the GMM model was trained
using an iterative expectation-maximization algorithm
for 1000 epochs. Also, the number of phenotypes that
can optimally describe the derivation cohort data was
determined using the Calinski Harabasz (CH) Score20

and Davies Bouldin (DB) Score.21 Once the phenotypes
were determined, patterns of biomarkers were visual-
ized using chord plots9 and an unsupervised hierarchi-
cal clustering heat map.22
Simplified supervised patient stratification model
The unique phenotypes identified in the clustering anal-
ysis were based on 30 features. To further reduce the
dependence on multiple features and to simplify the
stratification of the patients, we employed a light gradi-
ent boosted machine (LightGBM) model to classify the
patients into the identified phenotypes with a reduced
number of features. We first identified the 10 most
important features of the LightGBM model using the
information gain criteria. Next, a LightGBM prediction
model using these features was developed with the data
in the derivation cohort. The performance of the pro-
posed prediction model in assigning the patients to the
correct phenotype was assessed in a 10-fold cross-valida-
tion analysis using the area under the receiver operating
characteristics curve (AUC). Finally, the prediction
model was used to stratify the patients from the valida-
tion cohort. The clinical characteristics and outcomes in
the sub-groups of the validation cohort were analysed to
validate the generalizability of the proposed phenotypes.
www.thelancet.com Vol 53 Month , 2022



Figure 2. Importance ranking of features. A. Importance ranking of 89 features according to light gradient boosted machine model.
B-C. SHapley Additive exPlanations (SHAP) values for 30 features. D-I. Importance of features for phenotypes according to light gra-
dient boosted machine models.

Abbreviations: RBC, red blood cell; FPG, fasting plasma glucose; APTT, activated partial thromboplastin time; DBP, diastolic blood
pressure; BMI, body mass index; ALT, alanine aminotransferase; SBP, systolic blood pressure; GGT, g-Glutamyl transpeptidase; DBIL,
Direct bilirubin; TBIL, total bilirubin; HDL, high density lipoprotein; MCV, mean corpuscular volume; ALP, alkaline phosphatase; LDL,
low density lipoprotein; hs-CRP, high-sensitivity C-reactive protein; MMA, methylmalonic aciduria; LP(a), Lipoprotein (a); WBC, white
blood cell; CO2, Carbon dioxide combining power; LDH, lactate dehydrogenase; IBIL, indirect bilirubin; MCH, mean corpuscular
hemoglobin; GLB, globulin; ALB, albumin; MCHC, mean corpuscular hemoglobin concentration; TMAVA, N,N,N-trimethyl-5-aminova-
leric acid; RDWCV, coefficient of variation of RBC distribution width; RDW, RBC distribution width; TBA, total bile acid; AST, aspertate
aminotransferase; PLCR, Platelet large cell ratio; MPV, mean platelet volume; TBIL, total bilirubin; MCP-1, monocyte chemoattractant
protein-1; IL-6, interleukin-6; IL-6R, interleukin-6 receptor; TMAO, trimethylamine-N-oxide; INR, international normalized ratio; LDL-R,
low density lipoprotein-receptor; PCSK9, proprotein convertase subtilisin/Kexin type 9; HCY, homocysteinemia; YKL-40, chitinase-3-
like protein 1; IL-1Ra, Interleukin-1 receptor antagonist; UACR, urea albumin creatinine ratio; UMA, urine microalbumin; NIHSS,
National Institutes of Health Stroke Scale; sICAS, symptomatic intracranial atherosclerotic stenosis; sECAS, symptomatic extracranial
atherosclerotic stenosis.

Articles
For each phenotype, we also drew radar plots based on
10 key features, using z-values of each feature.23
Monte-Carlo simulation for stratified treatment effect
We used Monte-Carlo simulations to explore the hetero-
geneity of the treatment effects to the frequency distri-
butions of these phenotypes. High-intensity statin
treatment can provide more clinical benefits compared
www.thelancet.com Vol 53 Month , 2022
with standard statin in patients with high-risk ath-
erosclerotic cardiovascular disease. In this study, we
assessed how the benefits of high-intensity statin
therapy(atorvastatin 40-80 mg/day, or rosuvastatin
20-40 mg/day)24 during hospitalization in reducing
the probability of a recurrent stroke at 3 months
could change with the alteration in the relative distri-
bution of the identified phenotypes. (Supplementary
Methods)
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Statistical analysis
Continuous variables were expressed as means and
standard deviations (SD), ranges, or medians and
interquartile ranges (IQR). Categorical variables were
expressed as frequencies and percentages. Univariate
comparisons were done with the Kruskal-Wallis H
test for continuous variables and with the chi-square
test for categorical data. Spearman’s correlation coef-
ficients were calculated for associations between fea-
tures and were rearranged with hierarchical
clustering. Hazard ratios (HRs) and 95% confidence
intervals (CIs) for stroke recurrence, composite vas-
cular events, and all-cause mortality were estimated
for every phenotype by the Cox regression model.
Covariates known to be predictive of outcomes in
ischaemic stroke such as age, gender, smoking,
drinking, history of stroke, hypertension, diabetes
mellitus, dyslipidemia, and coronary heart disease,
were adjusted in the multivariable models. Crude
and multivariable-adjusted odds ratios (ORs) and
95% CIs for poor functional outcomes at 3 months
were obtained from a logistic regression model. All
data were analysed with the SAS version 9.4 soft-
ware (SAS Institute Inc, Cary, NC) or python 3.7.
The level of significance was defined as p < 0.05
(2-sided).
Role of the funding source
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report. The corresponding authors had
full access to all data and final responsibility to submit
for publication.
Results
12035 patients with acute non-cardioembolic ischaemic
stroke were included in this study. Among these
patients, 9539 patients were assigned to the derivation
cohort and the remaining 2496 patients were assigned
to the validation cohort. 251 patients in the derivation
cohort without multiple biomarkers were excluded.
(Figure 1 and Supplementary Figure 1) The details of all
the biomarkers, along with the demographic details of all
patients are presented in Supplementary Tables 2−4.
Comparison of clinical characteristics among
phenotypes
In the clustering analysis, based on the DB score and
CH score, 4 phenotypes were observed to be most opti-
mal to represent the derivation cohort data (Supplemen-
tary Figure 4). Thus, we identified four phenotypes with
distinctive patterns of clinical features (Supplementary
Figure 5), and the summary statistics of these pheno-
types are presented in Supplementary Tables 2−3.
Figure 3 and Supplementary Figure 6 showed patterns
of abnormal features that were characteristics of the
observed phenotypes. Post-hoc analysis of the pheno-
types indicated that phenotype 1, which included 2475
(26.65%) patients in the derivation cohort, was charac-
terized by a low level of adiponectin, and abnormal lipid
metabolism, with an increased level of low-density lipo-
protein (LDL), triglycerides, lipoprotein (a) (Lp [a]), and
impaired fasting plasma glucose (FPG). Phenotype 2,
including 507 (5.46%) patients, was characterized by
circulating inflammation, manifested as an increased
level of neutrophil, high-sensitivity C-reactive protein
(hs-CRP), interleukin-6 (IL-6), chitinase-3-like Protein 1
(YKL40), and interleukin-1 receptor antagonist (IL-
1RA); abnormality of renal function, with an increased
level of creatinine and cystatin C, urine microalbumin
(UMA), and urea albumin creatinine ratio (UACR); and
increased level of proprotein convertase subtilisin/Kexin
type 9 (PCSK9) and angiopoietin-Like 3 (ANGPTL3).
The 4392 (47.29%) patients in phenotype 3 were associ-
ated with minimum abnormalities in biomarkers of
liver and renal function indexes, inflammation, and glu-
cose metabolism. Phenotype 3 had the highest HDL
level and smaller infarct volume than patients in other
phenotypes. Also, the incidence of sICAS or sECAS
(16.6%) was the lowest in phenotype 3. Phenotype 4,
including 1914 (20.61%) patients, was characterized
by disturbance in homocysteine metabolism, with a
high level of homocysteine (HCY), methylmalonic
acid (MMA), and low levels of vitamin B12. The inci-
dence of sICAS or sECAS (45.5%) was the highest in
phenotype 4. Medical treatments and adherence did
not differ substantially in the four phenotypes (Sup-
plementary Figure 7). However, the patients in phe-
notype 2 and phenotype 4 were more likely to
receive reperfusion therapy than others (Supplemen-
tary Table 3).

We analysed the relationship between the newly
identified phenotypes and the traditional stroke sub-
types based on the TOAST and CCS criteria. The com-
parison of the novel phenotypes and CCS classification
showed that phenotype 2 and phenotype 4 were marked
by large artery atherosclerosis (46.4% and 52.1%,
respectively), and phenotype 3 was marked by small
artery occlusion (37.4%). The results indicated that the
observed phenotypes were significantly different from
the traditional ways of stroke stratification (Figure 4,
Supplementary Figure 8).
Supervised prediction model
To further simply the characterization of the identified
phenotypes, the features in the clustering model were
evaluated for their importance in clustering decisions,
and these feature importance scores are presented in
Figure 2D-I. Here, infarct volume, alanine aminotrans-
ferase (ALT), hs-CRP, g-Glutamyl transpeptidase
www.thelancet.com Vol 53 Month , 2022
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(GGT), neutrophil counts, FPG, creatinine, triglyceride,
methylmalonic aciduria (MMA), and Lp(a) were
observed to be the 10 most important features. Using
these 10 model-derived, routinely collected, important
biomarkers, a prediction model that can classify patients
into one of the four phenotypes was developed. In the
10-cross validation analysis on the development dataset,
the supervised prediction model achieved a 4-class
micro-average AUC of 0.983 (95% CI 0.980-0.986)
and a macro-average AUC of 0.974 (95% CI 0.969-
0.979) (Individual phenotype AUC: Phenotype 1: AUC
0.975, 95% CI 0.971- 0.978; Phenotype 2: AUC 0.954,
95% CI 0.944-0.963; Phenotype 3: AUC 0.986, 95%
CI 0.983-0.989; Phenotype 4: AUC 0.976, 95% CI
0.969-0.982) (Supplementary Figure 9). Using the
same prediction model, the patients from the valida-
tion cohort were assigned to one of the four pheno-
types. The phenotypes in the validation cohort were
observed to have similar clinical characteristics as
that of the derivation cohort (Figure 3 and Supple-
mentary Table 4). Radar plots represent profiles of
the four phenotypes based on 10 key features (Sup-
plementary Figure 10).
Association of phenotypes with clinical outcomes
The clinical outcomes in all the identified phenotypes
were analysed and the results of this analysis are pre-
sented in Figure 5, Table 1, and Supplementary Table 5.
In the derivation cohort, phenotype 3 was observed to
have the best clinical outcomes with the lowest stroke
recurrence rate (5.16%), combined vascular events
(5.23%), and all-cause mortality (0.38%) at 3-month fol-
low-up. At 3-month follow-up, compared to phenotype 3,
patients in phenotype 2 experienced significantly worse
outcomes in terms of stroke recurrence (adjusted HR
1.89, 95% CI 1.38-2.57, p<0.0001), combined vascular
events (adjusted HR 1.98, 95% CI 1.46-2.68, p<0.0001),
and all-cause mortality (adjusted HR 12.92, 95% CI 6.95-
24.02, p<0.0001). Also, the adjusted risk of poor func-
tional outcome was 3 times higher in phenotype 2 com-
pared to phenotype 3 (adjusted OR 3.61, 95% CI 2.96-
4.39, p<0.0001). The participants in phenotype 4 (vs.
phenotype 3) were observed to have a significantly higher
risk of all adverse clinical events including stroke recur-
rence (adjusted HR 1.77, 95% CI 1.45-2.16, p<0.0001),
combined vascular events (adjusted HR 1.79, 95% CI
1.47-2.18, p<0.0001), all-cause mortality (adjusted HR
4.18, 95% CI 2.32-7.55, p<0.0001), and poor functional
outcome (adjusted OR 2.31, 95% CI 2.04-2.61,
p<0.0001) at 3-month follow-up.

A similar pattern was repeated in the validation
cohort, the patients in phenotype 3 were observed to
have the best clinical outcomes. Whereas, phenotype 2
had the highest risk of stroke recurrence (adjusted HR
2.02, 95% CI 1.04-3.94, p=0.038), all-cause mortality
(adjusted HR 18.14, 95% CI 6.62-49.71, p<0.001), and
www.thelancet.com Vol 53 Month , 2022
poor functional outcome (adjusted OR 5.62, 95% CI
3.67-8.60, p<0.0001) at 3-month follow-up compared
to phenotype 3. Phenotype 1 (adjusted HR 3.44, 95% CI
1.17-10.09, p=0.024) and phenotype 4 (adjusted HR
4.65, 95% CI 1.81-11.93, p=0.0014) were associated with
a significantly higher risk of all-cause mortality at 3-
month follow-up (Figure 5, Table 1 and Supplementary
Table 5).

At one-year follow-up, patients in phenotype 2 had
the highest risk of combined vascular events (adjusted
HR 1.79, 95% CI 1.02-3.14 p=0.041), and all-cause mor-
tality (adjusted HR 8.94, 95% CI 4.76-16.77,
p<0.0001). Patients in phenotype 4 had a higher risk of
stroke recurrence (adjusted HR 1.56, 95% CI 1.13-2.16,
p=0.0072), combined vascular events (adjusted HR
1.60, 95% CI 1.17-2.21, p=0.0038), and all-cause mortal-
ity (adjusted HR 2.16, 95% CI 1.24-3.74, p=0.0062)
(Figure 5, Table 1 and Supplementary Table 5).
Differential estimated therapy effects by phenotypes
distributions
A Monte-Carlo simulation was performed to analyse the
effect of high-intensity statin therapy by varying the pro-
portion of phenotypes and the results of this analysis are
presented in Figure 6. In the baseline phenotype distri-
bution, the use of high-intensity statin therapy had a
0.01% chance of a benefit, a 76.69% chance of produc-
ing no significant effect, and a 23.30% chance of harm
for stroke recurrence at 3 months. The chance of finding
benefit increased to 6.10% when phenotype 2 repre-
sented the majority of the population, and the risk of
high-intensity statin therapy being harmful reduced to
0.22%. A similar pattern was observed in the validation
cohort. In the validation cohort, with the baseline pheno-
types distribution, the high-intensity statin therapy
had a 0.35% chance of a benefit, a 96.92% chance
of producing no significant effect, and a 2.73%
chance of harm for stroke recurrence at 3 months.
With phenotype 2 representing the majority of the
population, the chance of finding benefit increased
to 87.51%, and the chance of a harmful effect
reduced to 0.00%. The results of the Monte-Carlo
simulation showed that changing the proportion of
phenotype 1, phenotype 3, or phenotype 4 did not
significantly benefit from high-intensity statin ther-
apy. (Figure 6, Supplementary Figure 11).
Discussion
In this multi-centre study analysing 12035 patients with
acute non-cardioembolic ischaemic stroke, we proposed
a novel stratification of patients into four biomarker-
based phenotypes with unique clinical characteristics,
possibly unique disease pathophysiology, and signifi-
cantly different clinical outcomes. The proposed stratifi-
cation of patients may provide information about
7



Figure 3. Dendrogram and heat map for unsupervised hierarchical clustering. Dendrogram and heat map for unsupervised hierar-
chical clustering in 4 phenotypes based on all the biomarkers in the derivation cohort (A) and validation cohort (B).
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Figure 4. Comparison with traditional stroke subtypes. A. Comparison with CCS classification in the derivation cohort. B. Comparison
with CCS in the validation cohort.

Abbreviations: CCS, causative classification of stroke; LAA, large artery atherosclerosis; UE, undetermined etiology; SAO, small
artery occlusion.
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underlying disease mechanisms, and aid in guiding the
choice of post-stroke therapy. To the best of our knowl-
edge, this is the first study that provides a novel stratifi-
cation of acute non-cardioembolic ischaemic stroke
patients based on 92 biomarkers, including blood con-
stituents, coagulation function, liver function, renal
function, inflammation, lipid metabolism, homocyste-
ine metabolism, glucose metabolism, gut microbial
metabolites, and neuro-imaging features, and it is the
first study that applies machine learning techniques to
resolve heterogeneity in AIS using dense phenotypic
data.

In this study, we have derived phenotypes to facili-
tate the early detection of patients with a high risk of
unfavorable clinical outcomes. These defined pheno-
types can be identified at the time of hospital admission,
and thus could aid in early treatment planning and
enrollment of patients in experimental clinical trials.
Furthermore, with the use of feature importance analy-
sis and predictive modeling, we showed that the
patients can be uniquely assigned to the identified phe-
notypes using only ten biomarkers which are routinely
acquired even in resource-limited settings. This ensures
that the proposed method can be made available in
remote healthcare centres.

Phenotype 1 was most strongly characterized by
abnormal values of glucose and lipid metabolism as
well as clinical features associated with liver dysfunc-
tion. The results showed that the patients in phenotype
1 had a low level of adiponectin. Adiponectin is being
recognized as a protective adipokine in insulin resis-
tance and liver diseases. Previous studies indicate that
the decreased levels of adiponectin might play a key role
in the development of atherosclerosis and cardiovascu-
lar diseases.25,26 Changes in gut microbiota-related
metabolites represented by increased levels of TMAO
and its precursors, choline, were observed in phenotype
www.thelancet.com Vol 53 Month , 2022
1. Alterations in the gut microbiota composition are
known to drive activation of lipopolysaccharide, which
might result in hepatic steatosis, adipose tissue macro-
phages infiltration, dyslipidemia, hyperglycemia, hyper-
insulinemia, and obesity.27,28 In particular, TMAO has
been shown to directly influence the propensity of mac-
rophages to accumulate cholesterol and form foam cells
in atherosclerotic lesions, as well as to alter cholesterol
and sterol metabolism within multiple compartments
including the liver and intestines. 29,30 The evidence
from this study may provide opportunities for the devel-
opment of new diagnostic tests and therapeutic
approaches for the individuals that are classified as phe-
notype 1.

The participants in phenotype 2 were observed to be
at the highest risk of recurrent stroke, combined vascu-
lar events, poor functional outcomes, and all-cause mor-
tality. This phenotype was primarily characterized by
elevated levels of inflammation and a high incidence of
sICAS/sECAS. The serum level of ANGPTL3, lp(a), and
PCSK9 were also observed to be increased in phenotype
2. Atherosclerosis is a chronic inflammatory process of
the vascular wall that is initiated by excessive LDL-C and
is mediated by activated macrophages. Hyperlipidemia
elicits a profound enrichment of a pro-inflammatory
subset of monocytes. These pro-inflammatory mono-
cytes, home to atherosclerotic lesions, give rise to mac-
rophages, which in the arterial intima form foam cells,
and stimulate the innate immune response by express-
ing high levels of pro-inflammatory cytokines.31,32 Prog-
ress in understanding the basic biology of inflammation
in atherosclerosis will help to identify potential novel
strategies for modulating inflammation in stroke pre-
vention. Phenotype 2 was also characterized by an
abnormal renal function index. Inflammation is highly
prevalent in patients with chronic kidney disease (CKD)
and is consistently associated with cardiovascular events
9



Figure 5. Clinical outcomes stratified by the identified phenotypes. Kaplan-Meier curves of time to stroke recurrence (A), combined
vascular events (B), and all-cause mortality (C) within one year after stroke in derivation cohort. D. The distribution of the modified
Rankin Scale (mRS) score 90 days after stroke in derivation cohort. Kaplan-Meier curves of time to stroke recurrence (E), combined
vascular events (F), and all-cause mortality (G) within one year after stroke in validation cohort. H. The distribution of the mRS score
90 days after stroke in validation cohort.
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Phenotype Derivation cohort Validation cohort

Total Events,
n (%)

HR (95% CI) P value Adjust HR
(95% CI)

P value Total Events,
n (%)

HR (95% CI) P value Adjust HR
(95% CI)

P value

Stroke recurrence 3 months Phenotype 1 2475 148 (5.97%) 1.16 (0.94-1.43) 0.161 1.10 (0.89-1.36) 0.385 626 33 (5.27%) 1.23 (0.79-1.91) 0.365 1.22 (0.78-1.19) 0.385

Phenotype 2 507 49 (9.6%) 1.93 (1.41-2.62) <0.0001 1.89 (1.38-2.57) <0.0001 114 11 (9.64%) 2.32 (1.21-4.45) 0.011 2.02 (1.04-3.94) 0.038

Phenotype 3 4392 227 (5.16%) - - - - 1133 49 (4.32%) - - - -

Phenotype 4 1914 169 (8.82%) 1.74 (1.43-2.12) <0.0001 1.77 (1.45-2.16) <0.0001 623 41 (6.58%) 1.54 (1.02-2.33) 0.041 1.47 (0.97-2.23) 0.069

6 months Phenotype 1 2475 199 (8.04%) 1.26 (1.05-1.51) 0.013 1.21 (1.01-1.46) 0.041 626 45 (7.18%) 1.35 (0.92-1.98) 0.128 1.37 (0.92-2.04) 0.116

Phenotype 2 507 61 (12.03%) 1.95 (1.48-2.58) <0.0001 1.92 (1.46-2.54) <0.0001 114 12 (10.52%) 2.08 (1.12-3.86) 0.020 1.77 (0.94-3.33) 0.075

Phenotype 3 4392 282 (6.42%) - - - - 1133 61 (5.38%) - - - -

Phenotype 4 1914 199 (10.39%) 1.66 (1.38-1.99) <0.0001 1.67 (1.39-2.00) <0.0001 623 54 (8.66%) 1.65 (1.14-2.38) 0.0075 1.57 (1.08-2.26) 0.016

12 months Phenotype 1 2475 253 (10.22%) 1.25 (1.07-1.47) 0.0059 1.227 (1.04-1.45) 0.014 626 55 (8.78%) 1.27 (0.90-1.80) 0.168 1.31 (0.92-1.86) 0.137

Phenotype 2 507 71 (14.00%) 1.81 (1.40-2.33) <0.0001 1.77 (1.37-2.28) <0.0001 114 14 (12.28%) 1.93 (1.10-3.42) 0.022 1.72 (0.96-3.06) 0.066

Phenotype 3 4392 361 (8.21%) - - - - 1133 79 (6.97%) - - - -

Phenotype 4 1914 231 (12.06%) 1.52 (1.29-1.79) <0.0001 1.52 (1.29-1.80) <0.0001 623 69 (11.07%) 1.64 (1.19 -2.27) 0.0026 1.56 (1.13-2.16) 0.0072

Combined vascular

events

3 months Phenotype 1 2475 151 (6.10%) 1.17 (0.95-1.43) 0.138 1.10 (0.89-1.36) 0.362 626 36 (5.75%) 1.34 (0.87-2.06) 0.184 1.36 (0.87-2.11) 0.179

Phenotype 2 507 52 (10.25%) 2.02 (1.49-2.73) <0.0001 1.98 (1.46-2.68) <0.0001 114 11 (9.64%) 2.32 (1.21-4.45) 0.011 2.02 (1.04-3.94) 0.038

Phenotype 3 4392 230 (5.23%) - - - - 1133 49 (4.32%) - - - -

Phenotype 4 1914 173 (9.03%) 1.76 (1.44-2.14) <0.0001 1.79 (1.47-2.18) <0.0001 623 42 (6.74%) 1.58 (1.05-2.39) 0.029 1.51 (1.00- 2.28) 0.051

6 months Phenotype 1 2475 206 (8.32%) 1.25 (1.05-1.50) 0.012 1.21 (1.01-1.45) 0.043 626 48 (7.66%) 1.42 (0.97-2.06) 0.070 1.46 (0.99-2.15) 0.056

Phenotype 2 507 65 (12.82%) 2.01 (1.54-2.63) <0.0001 1.98 (1.51-2.60) <0.0001 114 13 (11.40%) 2.23 (1.22-4.05) 0.0088 1.86 (1.01 -3.42) 0.046

Phenotype 3 4392 293 (6.67%) - - - - 1133 62 (5.47%) - - - -

Phenotype 4 1914 204 (10.65%) 1.64 (1.37-1.96) <0.0001 1.65 (1.38-1.98) <0.0001 623 57 (9.14%) 1.71 (1.20-2.46) 0.0033 1.62 (1.13-2.33) 0.0085

12 months Phenotype 1 2475 267 (10.78%) 1.27 (1.09 -1.49) 0.0025 1.24 (1.06-1.46) 0.0081 626 59 (9.42%) 1.35 (0.97-1.89) 0.079 1.40 (0.99-1.99) 0.054

Phenotype 2 507 77 (15.018%) 1.89 (1.48 -2.42) <0.0001 1.85 (1.45-2.37) <0.0001 114 15 (13.15%) 2.06 (1.18-3.57) 0.010 1.79 (1.02-3.14) 0.041

Phenotype 3 4392 375 (8.53%) - - - - 1133 80 (7.06%) - - - -

Phenotype 4 1914 238 (12.43%) 1.51 (1.28 -1.77) <0.0001 1.51 (1.28-1.78) <0.0001 623 72 (11.55%) 1.69 (1.23-2.33) 0.0011 1.60 (1.17-2.21) 0.0038

Mortality 3 months Phenotype 1 2475 12 (0.48%) 1.25 (0.60-2.62) 0.551 1.26 (0.59 -2.70) 0.548 626 8 (1.27%) 2.41 (0.84-6.95) 0.102 3.44 (1.17-10.09) 0.024

Phenotype 2 507 26 (5.12%) 13.63 (7.39-25.11) <0.0001 12.92 (6.95-24.02) <0.0001 114 13 (11.40%) 22.64 (8.61-59.59) <0.0001 18.14 (6.62-49.71) <0.0001

Phenotype 3 4392 17 (0.38%) - - - - 1133 6 (0.52%) - - - -

Phenotype 4 1914 32 (1.67%) 4.35 (2.42-7.83) <0.0001 4.18 (2.32-7.55) <0.0001 623 16 (2.56%) 4.92 (1.92-12.57) <0.0001 4.65 (1.81-11.93) 0.0014

6 months Phenotype 1 2475 24 (0.96%) 1.37 (0.81-2.34) 0.243 1.49 (0.86 -2.57) 0.156 626 9 (1.43%) 1.25 (0.54-2.93) 0.602 1.60 (0.67-3.81) 0.285

Phenotype 2 507 35 (6.90%) 10.16 (6.27-16.48) <0.0001 9.69 (5.93-15.84) <0.0001 114 17 (14.91%) 14.11 (6.85-29.06) <0.0001 12.33 (5.73-26.51) <0.0001

Phenotype 3 4392 31 (0.71%) - - - - 1133 13 (1.14%) - - - -

Phenotype 4 1914 50 (2.61%) 3.75 (2.39-5.86) <0.0001 3.60 (2.30-5.64) <0.0001 623 22 (3.53%) 3.15 (1.58-6.24) 0.0011 2.96 (1.48-5.90) 0.0021

Table 1 (Continued)
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and mortality, supporting the role of kidney dysfunction
in the systemic process.33,34

Phenotype 2 had the highest level of inflammatory
markers, which may explain the correlation between the
new classification and outcomes. In recent years,
inflammation has been increasingly recognized as an
important contributor to the fate of the ischaemic brain
and the survival of people after ischaemic stroke.35 The
concentrations of various inflammatory markers like
neutrophils, high-sensitive C-reactive protein (hs-CRP),
and interleukin-6 (IL-6) could reflect a systemic stress
response to injury, which have been associated with a
high risk of cerebrovascular events.36−39 Therefore,
anti-inflammatory therapy has been proposed as a
potential treatment for preventing stroke recurrence
and other vascular events after ischaemic stroke or
TIA.40−42 The Colchicine Cardiovascular Outcomes
Trial (COLCOT) trial has shown that anti-inflammatory
therapy with colchicine can reduce the occurrence of
vascular events.43 Also, recent evidence indicates that
statins, in addition to their lipid-lowering properties,
can have anti-inflammatory and immunomodulatory
effects and these additional effects may play a vital role
in the prevention of vascular events.44 In this study,
Monte Carlo simulation revealed that patients in pheno-
type 2 could benefit from high-intensity statin therapy.
The results of An Intervention Trial Evaluating Rosu-
vastatin (JUPITER) trial showed that rosuvastatin
(20 mg daily) effectively reduced the incidence of major
cardiovascular events as compared with placebo (P
<0.001) in 17,802 healthy individuals without hyperlip-
idemia, but with high hs-CRP levels of >2 mg/L, and
the level of hs-CRP and LDL concentrations were
reduced by 37% and 50%, respectively.45 Furthermore,
in vitro and in vivo experiments have shown that statins
can modulate the NLRP3 inflammasome and pro-
inflammatory cytokine release such as IL-6.46,47 The
concept of statin pleiotropy has provided a window of
opportunity to test and target other nonlipid-lowering
signaling pathways that may affect cardiovascular
disease.48,49 Future prospective intervention studies are
needed to explore the therapeutic effect of interventions
targeting inflammation in patients with phenotype 2.

In the present analysis, out of the 4 identified pheno-
types, the patients in phenotype 3 presented with the
least amount of laboratory abnormalities. Also, patients
in phenotype 3 had significantly smaller infarct lesions
and small artery occlusion was the prominent cause of
stroke in this phenotype. Consequently, the patients in
this group were observed to be at the lowest risk of
recurrent stroke and had relatively better clinical out-
comes.

The risks of all adverse clinical events were observed
to be significantly higher in phenotype 4. Phenotype 4
was characterized by a low level of vitamin B12 and a
high level of MMA. Vitamin B12 has shown efficacy as a
nitric oxide scavenger. Accumulating pieces of evidence
www.thelancet.com Vol 53 Month , 2022



Figure 6. Monte-Carlo simulation of response to high-intensity statin therapy with a different relative frequency of phenotypes. In
the derivation cohort, the actual distribution of the data in the given phenotypes and the associated results of the harm, benefit,
and neutral effect analysis using Monte-Carlo simulation analysis are presented in panel A. Each simulation was conducted with
100000 iterations using sampling with replacement. The results of the same analysis by changing the phenotype distributions of
the data are presented in panels B and C. In panel B, the distribution of phenotype 2 was gradually increased whereas panel C
presents the results associated with the gradually increasing the distribution of phenotype 4. Panels D to F present similar results
for the validation cohort data.

Abbreviations: HBN: harm, benefit, or neutral.
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suggest that Cbl-associated metabolites, MMA and
HCY, may promote atherogenesis through its toxic
effects on the vascular endothelium, which is likely
mediated through oxidative stress.50 Besides, MMA
accumulation reflects the decreased activity of a mito-
chondrial Cbl-dependent enzyme, which is more sensi-
tive to oxidative damage.51 52 Further studies are needed
to establish specific therapy for the patients in pheno-
type 4, and vitamin supplements or antioxidant therapy
may prove to be beneficial to these patients.
www.thelancet.com Vol 53 Month , 2022
The results presented in this study have significant
implications for understanding the mechanisms of AIS.
First, the phenotypes presented in this study can be
used to prospectively stratify patients in future clinical
research, paving the way to a personalized precision
medicine approach in the management of AIS. Second,
our findings in this study advance the understanding of
circulating biomarker profiles in AIS and suggest that
multi-biomarker approaches can be implemented for
achieving better risk stratification. More importantly,
13
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owing to the multi-biomarker approach in this study, we
were able to shed light on more complex pathophysio-
logical pathways associated with AIS, which couldn’t
have been possible with single-biomarker analysis
methods. Lastly, in this analysis, the phenotypes were
derived from a large observational cohort and their gen-
eralizability was ensured using a large validation cohort.

Some potential limitations of the study should be
noted. First, despite all the efforts, the imputation of
missing values may affect the results of the study. To
reduce missing data, we derived a machine learning
model based on 10 key biomarkers, which are basic vari-
ables from clinical practice. Second, although the identi-
fied phenotypes were found to be generalizable in the
validation cohort, further research is needed to deter-
mine the utility of these novel phenotypes to optimize
clinical care and trial design. Third, the output of
machine learning is limited by the limitations of input.
Future studies with large biological data that can enable
an integrative analysis of multi-omics data (e.g., geno-
mics, transcriptomics, metabolomics) should be con-
ducted to uncover the complex molecular pathways
leading to AIS. Fourth, imputing mode or median by
subgroup may incur bias. However, considering ische-
mic stroke is a disease highly correlated with age and
gender, we divided the patients into six subgroups
according to their age and gender. Other imputation
methods such as multiple imputation could also be
used to generate accurate estimations of missing values.
Fifth, we employed telephonic interviews to collect
information about cardiovascular events at 6 and 12
months after AIS, which may potentially influence the
appraisal of the clinical outcomes. However, previous
studies have indicated the telephonic assessment of
recurrent ischaemic strokes to be reliable and
creditable.53,54 Furthermore, the present study was
based on participants from China, which may poten-
tially limit the interethnic extrapolation of the findings.
Further studies using the independent cohort and other
ethnic cohorts are needed to generalize the study’s
findings.

In conclusion, using data from a nationwide cohort
and machine learning methods, we identified four bio-
marker-based phenotypes that were correlated with spe-
cific pathophysiology and clinical outcomes in patients
with acute non-cardioembolic ischaemic stroke. With a
data-driven approach, this study presents a step towards
a more clinically useful stratification of patients, which
can play an important role in precision medicine and
clinical decision-making in AIS.
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